Genetic recombination in Bacillus subtilis: a division of labor between two single-strand DNA-binding proteins
نویسندگان
چکیده
We have investigated the structural, biochemical and cellular roles of the two single-stranded (ss) DNA-binding proteins from Bacillus subtilis, SsbA and SsbB. During transformation, SsbB localizes at the DNA entry pole where it binds and protects internalized ssDNA. The 2.8-Å resolution structure of SsbB bound to ssDNA reveals a similar overall protein architecture and ssDNA-binding surface to that of Escherichia coli SSB. SsbA, which binds ssDNA with higher affinity than SsbB, co-assembles onto SsbB-coated ssDNA and the two proteins inhibit ssDNA binding by the recombinase RecA. During chromosomal transformation, the RecA mediators RecO and DprA provide RecA access to ssDNA. Interestingly, RecO interaction with ssDNA-bound SsbA helps to dislodge both SsbA and SsbB from the DNA more efficiently than if the DNA is coated only with SsbA. Once RecA is nucleated onto the ssDNA, RecA filament elongation displaces SsbA and SsbB and enables RecA-mediated DNA strand exchange. During plasmid transformation, RecO localizes to the entry pole and catalyzes annealing of SsbA- or SsbA/SsbB-coated complementary ssDNAs to form duplex DNA with ssDNA tails. Our results provide a mechanistic framework for rationalizing the coordinated events modulated by SsbA, SsbB and RecO that are crucial for RecA-dependent chromosomal transformation and RecA-independent plasmid transformation.
منابع مشابه
Replication Restart after Replication-Transcription Conflicts Requires RecA in Bacillus subtilis.
UNLABELLED Efficient duplication of genomes depends on reactivation of replication forks outside the origin. Replication restart can be facilitated by recombination proteins, especially if single- or double-strand breaks form in the DNA. Each type of DNA break is processed by a distinct pathway, though both depend on the RecA protein. One common obstacle that can stall forks, potentially leadin...
متن کاملBacillus subtilis RecO and SsbA are crucial for RecA-mediated recombinational DNA repair
Genetic data have revealed that the absence of Bacillus subtilis RecO and one of the end-processing avenues (AddAB or RecJ) renders cells as sensitive to DNA damaging agents as the null recA, suggesting that both end-resection pathways require RecO for recombination. RecA, in the rATP·Mg(2+) bound form (RecA·ATP), is inactive to catalyze DNA recombination between linear double-stranded (ds) DNA...
متن کاملRapid purification of HU protein from Halobacillus karajensis
The histone-like protein HU is the most-abundant DNA-binding protein in bacteria. The HU protein non-specifically binds and bends DNA as a hetero- or homodimer, and can participate in DNA supercoiling and DNA condensation. It also takes part in DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows a certain degree of specificity to ...
متن کاملBacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine
Single-stranded DNA-binding proteins (SSBs) are required for repair, recombination and replication in all organisms. Eukaryotic SSBs are regulated by phosphorylation on serine and threonine residues. To our knowledge, phosphorylation of SSBs in bacteria has not been reported. A systematic search for phosphotyrosine-containing proteins in Streptomyces griseus by immunoaffinity chromatography ide...
متن کاملMechanism of Force Generation of a Viral DNA Packaging Motor
A large family of multimeric ATPases are involved in such diverse tasks as cell division, chromosome segregation, DNA recombination, strand separation, conjugation, and viral genome packaging. One such system is the Bacillus subtilis phage phi 29 DNA packaging motor, which generates large forces to compact its genome into a small protein capsid. Here we use optical tweezers to study, at the sin...
متن کامل